

Future of [More] Electrical Aircraft

Dr Askin T. Isikveren Head, Visionary Aircraft Concepts

ICAS Biennial Workshop – 2013

The Lord Charles Hotel & Conference Centre Cape Town, South Africa, 02 September 2013

>> Bauhaus Luftfahrt – An Introduction

>> Socio-economic Drivers & Top Level Requirements

>> Advanced Electrical Technologies

- > Electric Flight Feasibility Assessment
- > Hybrid-Electric Architectures
- > Typical Power Demand of Sub-systems

>> Design & Integration for Electro-mobility

- > Evolution of More-Electric & All-Electric Aircraft
- > Hybrid-Energy Engineering for Motive Power
- > Ce-Liner: Zero Emissions Concept
- > Interesting Engineering Trade-studies

>> Bauhaus Luftfahrt – An Introduction

>> Socio-economic Drivers & Top Level Requirements

>> Advanced Electrical Technologies

- > Electric Flight Feasibility Assessment
- > Hybrid-Electric Architectures
- > Typical Power Demand of Sub-systems

>> Design & Integration for Electro-mobility

- > Evolution of More-Electric & All-Electric Aircraft
- > Hybrid-Energy Engineering for Motive Power
- > Ce-Liner: Zero Emissions Concept
- > Interesting Engineering Trade-studies

The Bauhaus Luftfahrt Approach

>> Founded in November 2005 by

- > The Bavarian Ministry of Economic Affairs, Infrastructure, Transport and Technology
- > EADS (inc. Airbus, Cassidian & Eurocopter)
- > IABG mbH
- > Liebherr Aerospace
- > MTU Aero Engines

>> A non-profit research institution with long-term time horizon

- > Strengthening the cooperation between industry, science and politics
- > Developing new approaches for the future of aviation with a high level of technical creativity
- > Optimizing through a holistic approach in science, economics, engineering and design

>> Going "New Ways" for the mobility of tomorrow

Emphasis on Inter-disciplinary Research

>> Bauhaus Luftfahrt – An Introduction

>> Socio-economic Drivers & Top Level Requirements

>> Advanced Electrical Technologies

- > Electric Flight Feasibility Assessment
- > Hybrid-Electric Architectures
- > Typical Power Demand of Sub-systems

>> Design & Integration for Electro-mobility

- > Evolution of More-Electric & All-Electric Aircraft
- > Hybrid-Energy Engineering for Motive Power
- > Ce-Liner: Zero Emissions Concept
- > Interesting Engineering Trade-studies

Socio-Economic Drivers

>> Megacities

> Urban Living, growing middle-class

>> Demographic & Anthropometric

- > Increasing world-wide average age
- > Increasing passenger size and weight
- > Hybrid cultures, gender empowerment

- >> Environment
 - > Environmental degradation
 - > Mass transportation vs. individual motorised transport
 - > Socio-political pressure placed on reducing emissions and noise

Source: modified from Cole, BHL Symposium 2013

The Top-level Requirements

>> Flightpath 2050

- > 75% less CO₂ emissions^a
- > 90% less NO_x emissions^a
- > 65% reduction in perceived noise^a
- > Aircraft is designed and manufactured to be recyclable
- > Emission-free taxiing
- > 80% less accidents^b
- > 90% of all journeys (door-to-door within the EU) within 4 hrs
- > Flights arrived within 1 min. of planned time regardless of weather
- > ATM should handle at least 25M flights

^abased on a typical aircraft with 2000 technology ^bbased on 2000 traffic

>> Strategic Research & Innovation Agenda

Goals and Key contributions	2000 (Reference)	2020 (Vision)	2020 (AGAPE)	2020 (SRIA)	2035 (SRIA)	2050 (SRIA)
CO ₂ objective vs 2000 ("HLG")		-50%**				-75%**
CO ₂ vs 2000 (kg/pass km)*		-50%	-38%	-43%	-60%	-75%
Airframe energy need (Efficiency)	1	0,75	0,85	0,8	0,7	0,32
Propulsion & Power energy need (Efficiency)	1	0,8	0,8	0,8	0,7	
ATM and Infrastructure	1	0,88	0,95	0,93	0,88	0,88
Non Infrastructure- related Airlines Ops	1	0.96	0.96	0.96	0,93	0,88

* comparison with same transport capability aircraft and on a same mission in term on range and payload ** ACARE 2020 and ACARE 2050 High Level Goals for airframe, engine, systems and ATM/Operations

Granualising SRIA 2050 → Required Strategy

Alle Rechte bei / All rights with Bauhaus Luftfahrt

-100%

Full Electro-Mobility

Electro-Mobility

>> Bauhaus Luftfahrt – An Introduction

>> Socio-economic Drivers & Top Level Requirements

>> Advanced Electrical Technologies

- > Electric Flight Feasibility Assessment
- > Hybrid-Electric Architectures
- > Typical Power Demand of Sub-systems

>> Design & Integration for Electro-mobility

- > Evolution of More-Electric & All-Electric Aircraft
- > Hybrid-Energy Engineering for Motive Power
- > Ce-Liner: Zero Emissions Concept
- > Interesting Engineering Trade-studies

>> Exergy (useable energy):

The energy density is insufficient as feasibility assessment criterion

>> Ragone metrics:

Exergy and power densities are the key indicators for electric aircraft feasibility in the comparison of alternative power sources

>> Exergy (useable energy):

The energy density is insufficient as feasibility assessment criterion

>> Ragone metrics:

Exergy and power densities are the key indicators for electric aircraft feasibility in the comparison of alternative power sources

>> Exergy (useable energy):

The energy density is insufficient as feasibility assessment criterion

>> Ragone metrics:

Exergy and power densities are the key indicators for electric aircraft feasibility in the comparison of alternative power sources

>> Hybridization:

energy storage devices each inadequate may be an enabling energy system in combination

>> Exergy (useable energy):

The energy density is insufficient as feasibility assessment criterion

>> Ragone metrics:

Exergy and power densities are the key indicators for electric aircraft feasibility in the comparison of alternative power sources

>> Hybridization:

energy storage devices each inadequate may be an enabling energy system in combination

Hybrid-Electric Power System Architectures

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Future of [More] Electrical Aircraft, 02.09.2013 Seite 15

>> Maximum required power at different flight phases

>> Propulsion system = electric motor, motor controller, battery control unit

red line: normal operation blue line: abnormal ops = excl. non-essential customers

>> Bauhaus Luftfahrt – An Introduction

>> Socio-economic Drivers & Top Level Requirements

>> Advanced Electrical Technologies > Electric Flight Feasibility Assessment > Hybrid-Electric Architectures

> Typical Power Demand of Sub-systems

>> Design & Integration for Electro-mobility

- > Evolution of More-Electric & All-Electric Aircraft
- > Hybrid-Energy Engineering for Motive Power
- > Ce-Liner: Zero Emissions Concept
- > Interesting Engineering Trade-studies

ATA 24 MEA State-of-the-Art

MEA System Architecture based on Boeing 787* (hybrid voltage system)

Alle Rechte bei / All rights with Bauhaus Luftfahrt

ATA 24 AEA Evolution circa 2025 (mod. risk)

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Future of [More] Electrical Aircraft, 02.09.2013 Seite 19

ATA 24 AEA Evolution circa 2035 (higher risk)

Source: Pornet et al., AIAA 2013

Combining Energy Sources for Motive Power

>> Alternative Figures-of-Merit

> Thrust Specific Power Consumption

$$TSPC = \frac{P_{\text{supply}}}{F_0} = \frac{V_0}{\eta_{ov}} = \frac{V_0}{\eta_{ec}} \cdot \eta_{tr} \cdot \eta_{pr}$$

> Energy Specific Air Range

$$ESAR = \frac{dR}{dE} = \frac{V_0 \cdot L'_D}{TSPC \cdot m_{A/C} \cdot g} = \frac{\eta_{ov} \cdot L'_D}{m_{A/C} \cdot g}$$

Hybrid-Energy Engineering for Motive Power

>> Parallel Hybrid Solutions

Hybrid-Energy Aircraft Study

>> Medium-range Single-Aisle > Reference aircraft EIS 2035 > 180 PAX with max range of 3300 nm >> Retrofit Hybrid Aircraft concept > Installation of advanced elec. system > Battery energy density 1500 Wh/kg > No-resizing of the combustion engines > MTOW and OMLs kept fixed >> Performance outcomes > Max PAX Range → -530 nm (-16%)

- > 900 nm stage length
 - > Cruise-only: -13% block fuel
 - > Climb and Cruise: -16% block fuel
- > Up to -3% ESAR drop Ref. \rightarrow Retrofit

Concept	TOW/MTOW [%]	P EM,total inst. [MW]	m battery,total inst. [kg]	∆Fuel burn [%]	DE [%]
HYCcruise	100	6	8400	-13	13.4
HYCcruise&climb	100	5.1	8900	-16	14.5

Source: Pornet et al., AIAA 2013

Zero-emissions Concept – The Ce-Liner

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Universally-Electric Systems Architecture

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Power and Battery Performance Profiles

Source: Vratny et al., CEAS 2013

Benchmarking Ce-Liner

Aircraft Properties	Units	Ce-Liner	B787-3+	∆ (B787-3+)
MTOW	[kg]	109300	73700	+49.1%
MLW	[kg]	109300	70360	N/A
OEW / MTOW	[%]	54.4	65.4	-16.8%
OWE / PAX	kg/PAX	314	253	+24.0%
Max Energy(Fuel) Weight / MTOW	[%]	27.5	24.3	+13.2%
Reference Area (Sref)	[m²]	172.3	115.2	+49.6%
Aspect Ratio (planar wing)	[-]	7.1	10.8	-34.2%
MTOW / Sref	[kg/m²]	635	636	~0.0%
Power / MTOW	[kW/kg]	0.407	N/A	N/A
Thrust / MTOW (M0.20, SL)	[-]	0.233	0.310	-24.8%
TOFL@ISA,SL	[m]	2245	1830	+22.7%
LFL@ISA,SL	[m]	1875	1770	+5.9%
Approach Speed (MLW)	KCAS	149	146	+2.1%
Des.Range, LRC, ICA, Max-PAX	[nm]	900 nm, M0.75, FL330		
(L/D) @ LRC, TOC, ISA+10°C	(-)	20.5	18.4	+11.4%
ESAR, 900 nm, LRC, ISA+10°C	[km/kWh]	0.0473	0.0374	+26.4%

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Operational Aspects and Performance

>> Loadability and Turn-around

- > Little flexibility for manipulating loading loops
- > Specialised procedures for handling heavy 3Cs and high voltages
- > Less autonomy during turn-around

>> Normal Mode En route Perform.

- > Simpler flight planning, "low-andslow" design is not inevitable
- > Fixed SEP, no step-cruise
- > "Stepped" payload-range trade
- > Lower noise attributes

>> Servicing and Maintenance

- > Specialised procedures when handling power electronic systems
- > Greatly improved MTBF, MTBUR
- > Need to maximise component/subsystem DSGs
- >> Abnormal Mode Performance
 - > PMAD system driven limitations
 - > OEI during en route conditions no change in SEP, buffet limitations
 - > Impact of actual operating ambient conditions plus EMI/HIRF effects

Design and Integration of Adaptive Top-Wing

>> Critical trim/control cases > Cruise, take-off rotation, landing derotation and go-around >> Variable stiffness, adaptive hybrid-compliant system

>> Structural Health Monitoring

> Utilised for maintenance scheduling

and actuation monitoring

> Specially embedded OFDR and adoption of so-called "smart skin"

Engineering Trade-study: EF vs EOR

Engineering Trade-study: Propulsive Fuselage *C* Bauhaus Luftfahrt Neue Wege.

Source: Steiner et al., ICAS 2012

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Future of [More] Electrical Aircraft, 02.09.2013 Seite 31

Key Observations and Future Research Work

>> Key Observations

- > To realise Flightpath 2050 goals for emissions a hybrid-energy approach is necessary
 - >MEA-AEA evolution will not be sufficient → some means of electrical energy generation and/or storage for propulsion is key
 - > Indications that single energy storage approach will be limiting for commercial transportation
 - > Short-haul operations \rightarrow Universally-Electric solution
 - > Medium-to-long-haul operations \rightarrow Hybrid-Electric solution
 - > Even with relatively aggressive specifc weights, electrification yields significant degradation in vehicular efficiency → distributed propulsion and advanced, active wings could offset this

>> Future Research Work

- > Hybrid Electrical Power Systems dual energy storage approach
- > Integration schemes that accommodate retro-fit/upgrades between UESA and HE without extensive re-design

Contact

>> Bauhaus Luftfahrt e.V. Lyonel-Feininger-Strasse 28 80807 Munich Germany

>> Tel.: +49 (0) 89 3 07 48 49 - 0 Fax: +49 (0) 89 3 07 48 49 - 20 info@bauhaus-luftfahrt.net

>> http://www.bauhaus-luftfahrt.net

